skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haselkorn, Tamara S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chlamydiae represent a diverse group of obligate intracellular bacteria with elusive hosts in environmental settings. This study used one of the largest collections of wild amoebae (Dictyostelium discoideum and D. giganteum, 106 clones) collected over the past two decades to screen for novel environmental chlamydiae. We found that novel environmental chlamydiae are prevalent in two wild Dictyostelium species and assembled 42 novel chlamydiae metagenome-assembled genomes (MAGs). The MAGs represent three chlamydiae species previously only reported using 16S sequencing. Their genomes are divergent enough from other species to warrant placing them in two new genera (tentatively called Ca. Dictychlamydia sp. LF1, Ca. Dictychlamydia sp. LF2, and Ca. Feichlamydia sp. LF3). In addition, these chlamydiae species show strong host specificity with two Dictyostelium amoeba hosts, except one amoeba sample. Ca. Dictychlamydia sp. LF1 and Ca. Feichlamydia sp. LF3 was exclusively observed in D. discoideum, while Ca. Dictychlamydia sp. LF2 was found only in D. giganteum. Phylogenetic and comparative genomic analyses suggest that all three chlamydiae are close to arthropod-associated chlamydiae and likely have some intermediate characteristics between previously reported amoeba-associated and vertebrate-associated chlamydiae. This study significantly broadens our understanding of the chlamydial host range and underscores the role of amoebae as vital hosts for environmental chlamydiae. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum . The new species P. agricolaris sp. nov. , P. hayleyella sp. nov. , and P. bonniea sp. nov . are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum . We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship . All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses. 
    more » « less
  3. Abstract The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoebaDictyostelium discoideum, certain strains ofBurkholderiabacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. SomeBurkholderiastrains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence ofBurkholderiasymbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates ofD. discoideumand found 25% infected withBurkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions byBurkholderiato the symbiotic lifestyle. Finally, we tested the ability of 38 strains ofBurkholderiafromD. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis inD. discoideum. OnlyD. discoideumnative isolates belonging to theBurkholderia agricolaris,B. hayleyella, andB. bonnieaspecies were able to form persistent symbiotic associations withD. discoideum.TheBurkholderia–Dictyosteliumrelationship provides a promising arena for further studies of the pathway to symbiosis in a unique system. 
    more » « less